Wrinkled ‘super pea’ could be added to foods to reduce diabetes risk

Wrinkled 'super pea' could be added to foods to reduce diabetes risk

A type of wrinkled ‘super pea’ may help control blood sugar levels and could reduce the risk of type 2 diabetes, suggests a new study.

The research, from scientists at Imperial College London, the John Innes Centre, Quadram Institute Bioscience and University of Glasgow, suggests incorporating the peas into foods, in the form of whole pea seeds or flour, may help tackle the global type 2 diabetes epidemic.

The work, published in the journal Nature Food and funded by the BBSRC, focused on a naturally occurring type of pea. Unlike regular (smooth) peas, they contain higher amounts of ‘resistant starch’, which takes longer for the body to break down.

The study reveals that compared to eating smooth peas, wrinkled peas prevented ‘sugar spikes’—where blood sugar levels rise sharply after a meal. The same effect was seen when consuming flour made from wrinkled peas incorporated in a mixed meal.

According to the researchers, this could be important as frequent, large sugar spikes are thought to increase the risk of diabetes. They add that flour from their ‘super peas’ could potentially be used in commonly consumed processed foods which, if eaten over the long term, could prevent these sugar spikes.

Dr. Katerina Petropoulou, first author of the research from the Centre for Translational and Nutrition Food Research at Imperial College London, said: “Despite national campaigns to promote healthy eating, type 2 diabetes diagnosis rates continue to rise. An alternative dietary strategy to maintain normal blood glucose rates among the population is to improve the composition of commonly consumed foods. There is much evidence that diets rich in a type of carbohydrate called resistant starch have a positive impact on controlling blood glucose levels, and hence reduce susceptibility to type 2 diabetes.”

The peas used in the research are similar to the frozen peas you can buy in the supermarket. They are also the same as those used by the famous scientist Gregor Mendel in the 1800s, to show how dominant and recessive genetic traits can be passed on through selective breeding.

However, in these latest experiments, researchers used larger, mature versions of those typically found in the freezer aisle. This is because larger, mature peas contain more so-called ‘resistant starch’. The high amount of resistant starch is due to the way the starch is made in the cell, and the fact that the cells themselves are more resistant to digestion.


Starch is a compound that the body breaks down to release sugar, but resistant starch is broken down more slowly, so that sugar is released more slowly into the blood stream, resulting in a more stable increase rather than in a spike.

In the latest study, the researchers used a type of ‘super pea’ – wrinkled peas with a naturally occurring genetic mutation, or variant, that produces a greater amount of resistant starch, but a lower overall carbohydrate content.

Over a series of experiments, the team gave healthy volunteers a mixed meal including 50 grams of wrinkled peas, and in a series of control experiments gave them regular ‘smooth’ peas. Working with the University of Glasgow, researchers also added a tracer molecule to the peas, so that they could trace how they were absorbed and digested by the human gastrointestinal tract.

They repeated the experiments using flour made from wrinkled peas or control peas. To further investigate the impact of long-term consumption they recruited 25 volunteers and asked them to consume pea hummus and mushy peas (made from wrinkled or control peas) for a period of 4 weeks.

Professor Gary Frost, lead author of the study and head of Imperial’s Centre for Translational and Nutrition Food Research, said: “The ‘super pea’ contains a naturally-occurring variant gene that means they are high in resistant starches. These starches are not completely digested in the upper parts of the digestive tract and are available for fermentation by bacteria in the colon.”

Previous research from the same group has suggested that, as these bacteria ferment the starch, they produce compounds called short chain fatty acids. These compounds in turn help boost the function of cells that produce insulin, which helps control blood sugar.

Further tests using a mimic of the human gut, carried out by researchers at Quadram Institute Bioscience, showed that the way that the peas were prepared and cooked affected how quickly they were digested. Researchers also showed that there were significant benefits to our gut microbiota because of the fermentation process taking place there.

Professor Pete Wilde of the Quadram Institute said: “This study has shown us that by preparing these peas in certain ways we can further reduce blood sugar spikes, opening up new possibilities for making healthier foods using controlled food processing techniques.”

The researchers are now planning further trials involving volunteers with early stage type 2 diabetes. This will also involve a major pea breeding programme with help from industry partners to develop more ‘super peas’ with the resistant starch. They will also explore the genetic background of commonly consumed pulses (beans) to see if similar genetic variation in other crops shows the same positive effects on health.

Professor Claire Domoney of the John Innes Centre in Norfolk said: “This research has emphasized the value of developing the pea lines used in this study, which could be compared meaningfully and involved many years of breeding. It also demonstrates how plant genetics can be used effectively across many disciplines to study the impact of food on human health.”

The study authors point out that it is not only peas which have the resistant starch mutation. Other research is focusing on breeding the mutation into staple crops, such as rice and wheat. With modern genomic tools there is the potential for discovery or generation of the mutation across a range of seed and grain crops—which make up many of the carbohydrate-rich foods we consume.

Professor Domoney added: “Longer term it could become policy to include resistant starch in food. We have precedents for this kind of intervention, such as iron being added to bread to tackle anemia. It could potentially be a policy that food should contain a certain amount of resistant starch to tackle type 2 diabetes and other metabolic illnesses.”

Professor Melanie Welham, BBSRC’s Executive Chair, said “By investing in plant research, such as this collaboration between Imperial College, the Quadram Institute and the John Innes Centre, new solutions that help address the health problems affecting many people across the country are being developed. Long term benefits come from long term investments that equip our research base to tackle new and emerging challenges.”




Exposure to small molecule cocktails allows induction of neural crest lineage cells from human adipose-derived mesenchymal stem cells

Exposure to small molecule cocktails allows induction of neural crest lineage cells from human adipose-derived mesenchymal stem cells


Neural crest cells (NCCs) are a promising source for cell therapy and regenerative medicine owing to their multipotency, self-renewability, and capability to secrete various trophic factors. However, isolating NCCs from adult organs is challenging, because NCCs are broadly distributed throughout the body. Hence, we attempted to directly induce NCCs from human adipose-derived mesenchymal stem cells (ADSCs), which can be isolated easily, using small molecule cocktails. We established a controlled induction protocol with two-step application of small molecule cocktails for 6 days. The induction efficiency was evaluated based on mRNA and protein expression of neural crest markers, such as nerve growth factor receptor (NGFR) and sex-determining region Y-box 10 (SOX10). We also found that various trophic factors were significantly upregulated following treatment with the small molecule cocktails. Therefore, we performed global profiling of cell surface makers and identified distinctly upregulated markers, including the neural crest-specific cell surface markers CD271 and CD57. These results indicate that our chemical treatment can direct human ADSCs to developing into the neural crest lineage. This offers a promising experimental platform to study human NCCs for applications in cell therapy and regenerative medicine.

Source: Journal Plos


November is Diabetes Awareness Month!

November is Diabetes Awareness Month!

Diabetes is a condition that affects how the body uses blood sugar (glucose). About 34 million Americans suffer from diabetes, and roughly 7 million of those cases go undiagnosed. There are two types of diabetes: Type 1 and Type 2. 

Type 1 diabetes can develop at any age, and a combination of genes and environmental factors are thought to be the cause. Meanwhile, Type 2 diabetes occurs at a later stage in life and generally appears after prediabetes. In Type 2 diabetes, genes and environmental factors play a role, but being overweight can also present an issue. November is Diabetes Awareness Month, and it provides an opportunity to spread more information on this condition: 

  • 1 in 5 Americans do not know they have diabetes 
  • Diabetes is the 7th leading cause of death in the US 
  • Type 2 diabetes accounts for approximately 90% to 95% of all diagnosed cases 
  • Exercise and weight loss reduces the risk of prediabetes becoming Type 2 diabetes 

  • 25% of adults over 65 have diabetes 
Source:  nih.gov

Interaction between central obesity and frailty on the clinical outcome of peritoneal dialysis patients

Interaction between central obesity and frailty on the clinical outcome of peritoneal dialysis patients


Frailty is described by Fried et al. [1] as a clinical syndrome involving at least three of the following features: unintentional weight loss (10 lbs in one year), self-reported exhaustion, weakness (as determined by grip strength), slow walking speed, and low physical activity. It is highly prevalent among patients on dialysis, with a prevalence of up to 67.7% in previous report [2].

Physical frailty has important health consequences. Frail patients are more susceptible to the development of adverse outcomes when faced with a stressor. It also leads to a decline in physical function, gait disability, increase in the risks of fall. As a result, frail peritoneal dialysis (PD) patients have a higher hospitalization risk and their hospital stay tends to be prolonged [3]. Physical frailty is also a well-established independent predictor of adverse outcomes including mortality in pre-dialysis end stage renal disease patients [4], hemodialysis (HD) patients and PD patients [35].

Physical frailty causes alteration in body composition. Frail patients tend to suffer from obesity [69]. On the other hand, PD patients are more susceptible to central obesity [10] due to exposure to glucose-containing dialysate fluid. In contrast to general obesity, central obesity confers a worse survival in dialysis patients [11]. Previous study has shown synergistic effect on mortality between physical frailty and central obesity in HD patients. However, the interaction between physical frailty and body composition has not been explored.


Source: Journal Plos

Breast Cancer

Breast Cancer Awareness Month 

This month we are focusing on Breast Cancer Awareness Month and giving a voice to survivors and advocates. This October we are featuring breast cancer advocates on The Monthly Dose to learn more about their experiences and their road to advocacy. We want to give a voice to survivors and raise awareness of this condition that affects more than 200,000 women per year in the US. Here are some facts on breast cancer:

  • 1 in 8 women in the United States will develop breast cancer in her lifetime
  • 64% of breast cancer cases are diagnosed at a localized stage
  • Men can also develop breast cancer although it is extremely rare about 15% of US cases
  • For women in the U.S., breast cancer death rates are higher than those for any other cancer, besides lung cancer
  • A woman’s risk of breast cancer nearly doubles if she has a first-degree relative (mother, sister, daughter) who has been diagnosed with breast cancer. Less than 15% of women who get breast cancer have a family member diagnosed with it

Source: Cancer Org

tumor in 3D

New cancer diagnostics: A glimpse into the tumor in 3D

New cancer diagnostics: A glimpse into the tumor in 3D

In order to analyze tumors, they have to be cut into thin slices; now, a new technology has been developed that makes pieces of the tumor visible in 3D without cutting them

After cancer surgery, the crucial question is: Are there possibly cancer cells left behind that can continue to grow, or has the entire tumor actually been removed? To find out, the tumor is examined by pathologists. Until now, thin sections were made which were then analyzed under a microscope. A new technique, developed at TU Wien (Vienna), together with the TU Munich, could now initiate a revolution in pathology: Tumor tissue is made transparent and illuminated with a special ultramicroscope. This makes it possible to analyze all the tissue removed in 3D without the need for slicing up the tumor. That way, the reliability of the diagnosis can be significantly increased. The new technique has now been published in the journal “Nature Scientific Reports“.

Tissue samples that save lives

“Under the microscope you can see whether the removed tumor is surrounded by a seam of healthy tissue,” says Prof. Hans Ulrich Dodt from the Institute of Solid State Electronics at TU Wien. “If this is the case, the patient often only needs to recover. If this is not the case, it may be necessary to perform follow-up surgery or additional radiation therapy. Especially after breast cancer operations this happens frequently.”

The problem is that it is never possible to completely examine the entire tumor in this way. “Usually, an approximately 4-micrometer thick section is made every 5 millimeters. This means that only about one-thousandth of the entire tumor volume is actually examined.” In critical areas, a finer spacing may be chosen, but it is impossible to study the entire tissue in this way.

Revolution in pathology

“We are convinced that this method will revolutionize pathology,” says Hans- Ulrich Dodt. “In less time than before, greater reliability in examinations can be achieved. In addition, the new 3D method should also provide completely new insights into cancer development in the future. Since it is now possible for the first time to display the spread of cancer cells in human surgical specimens in three dimensions, understanding of tumor biology should also make significant progress.

The new 3D tumor microscopy should make work in pathology much easier. “Instead of inspecting a large number of histological sections under the microscope, pathologists will in future be able to scroll through the images with the mouse, similarly to how radiologists are working today,” says Hans-Ulrich Dodt. The enormous amount of image data that is generated in the process also opens up completely new opportunities in the field of artificial intelligence, believes Dodt: “Perhaps such computer programs could speed up and simplify tumor diagnostics in the future.”


Source: Eurakalert.org


Researchers find a source of breast tumor heterogeneity and pathway that limits the emergence​

Researchers find source of breast tumor heterogeneity and pathway that limits emergence

Researchers find a signaling pathway that limits mammary basal cells’ ability to fuel the growth of multiple aggressive cell populations within a breast tumor, uncovering opportunities for novel therapeutic approaches to breast cancer

LEBANON, NH – A key hurdle in treating breast cancers is intratumoral heterogeneity, or the presence of multiple different cell populations within the same tumor that have distinct characteristics such as gene expression, metabolism and ability to divide, spread and grow. These cells can also respond with varying levels of sensitivity to standard therapies, and ultimately, are a contributing factor to therapeutic resistance.

A team of researchers led by Dartmouth’s and Dartmouth-Hitchcock’s Norris Cotton Cancer Center have a new understanding of how tumor heterogeneity arises and how it can be curtailed to render tumors less metastatic and more sensitive to therapy. The team identified that the mammary basal cell lineage contributes to breast cancer heterogeneity, fueling the outgrowth of multiple aggressive tumor subpopulations.

“Through the activation of a signaling pathway driven by protein kinase A (PKA), we are able to limit the self-renewal potential of basal cells, which impedes the outgrowth of metastatic, therapy-resistant tumor cell subpopulations,” says Principal Investigator and cancer biologist Diwakar Pattabiraman, PhD, who is also the corresponding author of the study.


Pattabiraman notes that developing an understanding of how to tackle this heterogeneity is crucial for successful therapeutic intervention. “While there are no approaches to targeting PKA currently, there could be some therapeutic utility in pursuing the inhibition of its substrates such as Sox4. We plan to study the PKA-Sox4 connection in further detail, specifically to explore the possibility of targeting the transcriptional ability of Sox4.”


Source:  EurekAlert